If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+4n-1600=0
a = 2; b = 4; c = -1600;
Δ = b2-4ac
Δ = 42-4·2·(-1600)
Δ = 12816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12816}=\sqrt{144*89}=\sqrt{144}*\sqrt{89}=12\sqrt{89}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-12\sqrt{89}}{2*2}=\frac{-4-12\sqrt{89}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+12\sqrt{89}}{2*2}=\frac{-4+12\sqrt{89}}{4} $
| -242=11(8-5x) | | 5x+4+10(x-1)=24 | | 4-2x=20+6x | | 10+-2x=24 | | .25(n+3)=9 | | 8y=63-y | | (6y+5)(5y+2)=0 | | -3(12x+9)-8=253 | | -8u+3(u+5)=10 | | -3x+52=13 | | 24x-24x=24 | | -5(4-t)+2=5t-18 | | b+6=-8-6b | | 43=-3(x+2)+2(2x+1) | | 22=-x+243 | | 8w+63=15w | | -6(5b+1)=-66 | | 2y-5-6y-(7y-6)=6y | | 2+10x=1x-56 | | 12x-6x+174=12x+72 | | 225-y=115 | | -9=(-3/4u) | | 121/2=4x-21/2 | | 6x-9=+3x+3=12 | | 9x=32=x | | -3(1+4k)=-75 | | (x-40+29.45)2=17.75 | | 3x=19.3 | | 144=6(a+10) | | (x-40-29.45)2=17.75 | | 4x/6-8x/3=4 | | 2/14x+1/2x=44 |